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H I G H L I G H T S

• The developed adjoint method can effectively be used for WFLO gradient computations.

• The adjoint method significantly reduces the cost for the gradient computation.

• The AEP is improved on average by 15% with gradient-based layout optimization.
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A B S T R A C T

Current methodologies to optimize wind farm layouts to maximize the farm energy production rely on simple
analytical models for wake loss estimations. In this paper, we present an innovative continuous adjoint for-
mulation for gradient calculations within the framework of a gradient-based wind farm layout optimization. The
developed optimization methodology integrates high-fidelity CFD models and, thanks to the adjoint method,
overcomes the computationally high costs of a CFD-based optimization. The proposed continuous adjoint for-
mulation allows for a derivation of the general adjoint equations, before any discretization is being applied, and
therefore allows for a more flexible implementation in CFD software packages. Adjoint formulations for different
conditions in the flow equations, namely, laminar, frozen-turbulence and turbulent flows are presented. The
proposed formulation was implemented in a 2D domain and verified by comparing the calculated gradients with
finite-difference approximations. Gradient calculations using the developed adjoint method were implemented
in a gradient-based optimization methodology with open source software libraries, and were used to solve a 2D
wind farm layout optimization problem under a wide array of wind resource scenarios. Our results showed that
the annual energy production (AEP) of a given wind farm layout can be effectively improved within 30–60
iterations, depending on the initial layout and wind resource distribution. Improvements in AEP were found to
be in the range of 7–37%, with an average of 15%.

1. Introduction

The wind farm layout optimization (WFLO) consists in finding the
optimal spatial arrangement of wind turbines within a given wind farm
terrain and boundary, typically to maximize the annual energy gener-
ated by the system. The WFLO has attracted a lot of attention from
researchers and industry practitioners as it has been proven that better
placement of wind turbines can increase the overall efficiency and the
total revenue of a wind farm [1,2]. In addition, recent developments in
optimization methodologies have started accounting for the health and
environmental impact of wind farms, as it has become a matter of
concern for governments and wind farm designers, particularly re-
garding noise generation, land use, and infrastructure deployment

[3–5].
The main phenomenon that occurs in wind farms and affects their

performance is the wake generated by the wind turbines. The wakes are
regions of low wind speed that are the result of the kinetic energy ex-
tracted by the turbines. These wakes lower the speed of the wind en-
tering the turbines placed downstream and, consequently, reduce their
power production. In large wind farms, this effect has been shown to
diminish the annual energy production by 10–20% [6]. The placement
of wind turbines within a wind farm is hence a crucial factor, and an
optimization process is strictly required to extract the maximum energy
and minimize the cost of energy production.

From a design perspective, the WFLO problem requires therefore to
accurately estimate the wake losses in wind farms. Different approaches
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exist to model wind turbine wakes, namely analytical and numerical
models [7]. Analytical wake models are based on self-similar velocity
deficit profiles obtained from experimental and theoretical work and
have the advantage of being simple and computationally efficient.
Among the most used analytical wake models are the ones developed by
Jensen [8], Larsen [9], and Frandsen et al. [10]. These models are ca-
librated to a single turbine operating in isolation by means of empirical
constants. Ad hoc models for wakes overlapping from multiple turbines
need also to be introduced for wind farm power calculations [11,12]:
they usually assume simple superimposition of turbine wakes and ne-
glect the complex turbulent mixing occurring in wind farms. Because of
these simplifications, the analytical wake models are not capable of
accurately dealing with flow structures introduced by atmospheric
conditions, changes in terrain roughness, speed-up effects around tur-
bines or terrain features, and complex flow phenomena such as wake
meandering [6].

On the other hand, numerical models, which rely on Computational
Fluid Dynamics (CFD), offer higher accuracy and flexibility to handle
different ambient conditions and terrain topography. CFD models are
based on the solution of the Navier-Stokes (NS) equation and, de-
pending on the method used to model turbulence, two categories can be
identified: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy
Simulation (LES) methods [13]. RANS methods are based on a time-
averaging procedure for the flow field solution and require additional
turbulence modeling to close the system of equations. These methods
have been widely used in wind farm simulations and have been shown
to be a robust tool especially when estimations of the mean flow field
and power output are desired. The reader can refer to Refs. [7,13–17]
for comprehensive analyses and reviews of the RANS methods. LES
methods are instead based on filtered NS equations: they resolve the
large energy-containing eddies whereas they introduce mathematical
models for smaller eddies that are strongly affected by molecular
viscosity and dissipation. Applications and further details of wind farm
LES can be found in Ref. [18].

Common approaches found in the WFLO literature have focused on
minimizing turbine wake interactions based on simplified mathematical
models of wake behavior, and relying on optimization metaheuristics to
solve the non-linear, multi-objective, constrained WFLO problem
[1,2,19]. Metaheuristics and stochastic optimization methods are cur-
rently the state of the art in solving the wind farm layout optimization
problem. Implementations are found of genetic/evolutionary algo-
rithms (e.g., [4,5,20–24]), particle swarm optimization algorithms
(e.g., [25–29]), simulated annealing methods (e.g., [30]), and greedy
algorithms (e.g., [31]). Mathematical programming approaches are also
common in the WFLO: they are often implemented as stand-alone
methods (e.g., [32–34]) and sometime combined with heuristic
methods (e.g., [35]). Recently, non-linear mathematical programming
that uses exact gradient information has showed great potential in
tackling this problem. In particular, gradient-based methodologies
using the exact derivatives of the objective function and constraints
were demonstrated to outperform genetic algorithms in terms of solu-
tion quality and computational cost [36].

Optimization methodologies that are integrated with CFD models
face practical limits in terms of computer requirements: optimization
processes require a large number of evaluations, and each CFD eva-
luation will usually have a significant computational cost. The number
of required evaluations strictly depends on the particular problem being
solved as well as the optimization algorithm being used, but it scales
with the number of optimization variables (i.e., the number of turines),
and generally ranges from hundreds to hundreds of thousands evalua-
tions. In the context of WFLO, the number of evaluations was lower
when mathematical programming algorithms were used [36], and
highest for metaheuristic methods [21,23]. A clear consequence is that
a CFD-based optimization is only possible when the number of required
evaluations is relatively low and, moreover, when the duration of a
single CFD computation does not exceed a few hours at most [37].

These constraints have prevented the use of CFD models in the WFLO
problem.

The first studies on the coupling of CFD models with optimization to
tackle the WFLO problem have been recently conducted. Kuo et al. [38]
proposed an algorithm that couples CFD with mixed-integer program-
ming (MIP) to optimize layouts on complex terrains. Thanks to the
proposed methodology, the study achieved a convenient trade-off be-
tween computational cost and solution quality. King et al. [39,40] de-
veloped a gradient-based approach to solve the WFLO problem which
used an adjoint method in its discrete formulation. The adjoint method
is a means to compute the gradient required by gradient-based opti-
mization methods when the objective function depends on a set of state
variables (for this case, the NS equations) [41]. Adjoint methods can
generally be divided into discrete and continuous methods [37]. Their
main characteristic is that the total cost for the gradient computation
does not depend on the number of design variables but is approximately
equal to that of a single CFD evaluation. Thanks to this feature, the
adjoint methods have been widely and successfully used in aero-
dynamic shape optimization and geophysical tomography (e.g.,
[42–47]).

In the present paper, we describe an optimization methodology that
integrates the high accuracy and flexibility offered by the CFD models
and that overcomes the computationally high costs of a CFD-based
optimization. To this end, we present an adjoint method in its con-
tinuous formulation for the gradient computation. To the authors’ best
knowledge, this is the first continuous formulation of the adjoint
method applied to the gradient computation in the WFLO problem. The
continuous adjoint formulation allows for a derivation of the general
adjoint equations, before any discretization is being applied, and
therefore allows also for a more flexible implementation in CFD soft-
ware packages. Here we present a formulation for different conditions
in the flow equations, namely, laminar, frozen-turbulence and turbulent
flows. To verify the developed formulation, gradients calculated under
these different flow conditions are compared with gradients computed
with traditional central-difference schemes. The gradient calculation
using the developed adjoint method is then incorporated into a gra-
dient-based optimization methodology and applied to a set of 2D case
studies with a wide variety of wind resource profiles.

2. The adjoint method

This section illustrates the general framework underlying the ad-
joint method, as first conceptualized by Jameson [42], and its compu-
tational advantages. Suppose that the governing equations of a system
can be expressed as =G ϕ α( , ) 0, where G is the set of differential
equations expressed in vector form (e.g., the RANS equations), ϕ is the
vector of state variables (e.g., the flow field variables), and α is a vector
of the design variables (e.g., the wind turbine coordinates). The system
of the governing equations implicitly states that the state variables, ϕ,
are function of the design variables, α . A scalar objective function that
measures a quantity of interest (e.g., the total power/energy production
of the wind farm) can be expressed as the integral of a user-defined
function, ϕ α αJ [ ( ), ], over a certain volume, ΩO. Optimization problems
are formulated such that the optimal design variables need to be found
within certain constraints to maximize the objective function, namely:

∫
=

=
⩽

ϕ α α

G ϕ α α
α
α

J d

k
h

max [ ( ), ] Ω,

subject to [ ( ), ] 0 in Ω,
( ) 0,
( ) 0,

α ΩO

(1)

where h and k are additional equality and inequality constraints on the
design variables α, such as upper and lower bounds on a control input
(e.g., wind farm site boundaries, wind turbines interspacing), and Ω is
the entire domain over which the constraints are applied.

Gradient-based optimization algorithms require the gradient of the
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objective function with respect to all of the control parameters, i.e.,
∫( ) αd Jd dΩΩO

. The derivation of this gradient with the adjoint
method can be shown starting from the definition of the Lagrangian
function:

̂∫ ∫= + ϕ GL Jd dΩ Ω,T

Ω ΩO (2)

where ̂ϕ is the vector of the Lagrange multipliers, also called adjoint
variables. As G is everywhere zero by construction, the Lagrangian and
its variation are always equal in value to the objective function and its
variation (i.e., =L J and ∫= ( )δL δ JdΩΩO

) while ̂ϕ can be arbitrarily
chosen. By applying the chain rule, the variation of the Lagrangian can
be shown to be:

̂

̂ ̂

∫ ∫

∫ ∫⎜ ⎟ ⎜ ⎟

= ∂
∂

+ ∂
∂

+ ⎛
⎝

∂
∂

+ ∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠⧹

( ) ( )α
α

α
ϕ G α

ϕ
ϕ G

ϕ
ϕ
α

α ϕ G
ϕ

ϕ
α

α

δL Jd δ d δ

J d
d

δ d
d
d

δ d

Ω Ω

Ω Ω.

T

T T

Ω Ω

Ω Ω Ω

O

O O (3)

Since the objective function is typically a simple user-defined
function, its partial derivatives with respect to the design variables,

∫∂ ∂( ) αJdΩΩO
, and state variables, ∂ ∂ϕJ/ , are straightforward to

calculate numerically and analytically, respectively. The partial deri-
vative of the constraints with respect to the design variables,

̂∫∂ ∂ϕ G αd( Ω)
T

Ω , is equal to zero whenever the state equations, G, are
and remain satisfied. However, this is not the case when volume source
terms in the state equations are themselves a function of the design
variables. In such cases, in the partial derivative, a term representing
the source position shift needs to be defined and this creates an im-
balance in the state equations that can be computed numerically. The
partial derivative of the constraints with respect to the state variables,
∂ ∂G ϕ/ , can be determined with classic derivation rules. Lastly, ϕ αd d/ is
the most expensive term to compute for high-dimensional design and
state spaces. In the adjoint approach, this last term is eliminated by
choosing the adjoint variables such that:

̂
̂
+ =

= ⧹

∂
∂

∂
∂

∂
∂

ϕ

ϕ

0 in Ω ,

0 in Ω Ω ,

ϕ
T G

ϕ
T G

ϕ

J
O

O (4)

These are called the adjoint equations and their solution usually
requires a computational time that is comparable to the solution of the
flow equations. With the values of the adjoint variables, it is therefore
easy to calculate the total gradient needed for the optimization algo-
rithm:

̂∫ ∫ ∫= = ∂
∂

+ ∂
∂( ) ( ) ( )α α α α

ϕ Gd
d

Jd dL
d

Jd dΩ Ω Ω .T

Ω Ω ΩO O (5)

3. Continuous adjoint formulation for the wind farm layout
optimization problem

The formulation of the adjoint method needs to be derived for every
problem to which it is applied. Specifically, this requires the derivation
and the calculation of the partial derivative terms highlighted in the
previous section. The formulation of the adjoint method for the wind
farm layout optimization problem starts with the definition of the de-
sign variables, α, which are the coordinates of the wind turbines within
the wind farm:

= = …α x x k K[( , ) ] 1, , ,k1 2 (6)

where K is the total number of wind turbines.
Each wind turbines is modeled as an actuator disk, which is char-

acterized by a cylindrical volume, defined by the rotor swept area,
where a distributed force, defined as axial momentum source, F, is
applied. The actuator disk model offers a convenient trade-off between
computational cost and accuracy: even if it does not provide a detailed

description of the wind turbine geometry, it is able to adequately
capture its wake effect for the intended application in wind farm si-
mulations and optimization [48,49]. The axial force applied on the flow
field as function of the reference wind speed is:

=F ρ πD C U1
2 4

,T ref

2
2

(7)

where ρ is the air density, D is the rotor diameter, Uref is the upstream
wind speed, and CT is the thrust coefficient, obtained from the thrust
coefficient curve of the wind turbine at the specified Uref . The power
generated can be computed as the product of the axial force and the
average velocity over the actuator disk volume V:

∫ ∫= = =P Fv F
V

v d f v d1 Ω Ω,n V n V n (8)

where vn is the average normal velocity over the wind turbine rotor
volume, V. Because of the 2-dimensional problem formulation, the ac-
tual wind turbine rotor volume is a rectangular prism with unit height
and rectangular base whose width is equal to the rotor diameter.

The objective function for the WFLO is the annual energy produc-
tion (AEP) of the wind farm, which is a function of both the wind farm
layout and the wind resource. Without loss of generality, herein we
present a simplified version of the problem in which the objective
function is the total power produced by the wind turbines under a
single wind state, i.e.:

∫ ∫= =P Jd f v dΩ Ω,k nΩ ΩO O (9)

where

∑=
=

VΩ ,O
k

K

k
1 (10)

∈f V .k k (11)

For WFLO, given the statistical distribution of wind speeds and di-
rections, the formulation above (Eq. (9)) is the elemental building block
required to calculate the expected AEP, as follows:

∑ ∑=
= =

AEP p P8760 ,
s

S

t

T

s t s t
1 1

, ,
(12)

where S and T are the number of wind speed and direction bins, re-
spectively, ps t, is the probability of occurrence for each wind speed and
direction bin, and Ps t, is the total power produced by the turbines, Eq.
(9), for a given wind speed and direction.

The governing equations for the present WFLO are the Navier-
Stokes equations (i.e., the continuity (C) and momentum (M) equations)
for steady, incompressible flow, which in the context of the adjoint
formulation are the constraints of the problem, G:

∂
∂

=C v
x

: 0 in Ω,i

i (13)

⎧

⎨
⎪

⎩⎪

+ − = −

+ − + = = …

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∗

∗M
v ν S

v ν S f V k K
:

(2 ) 0 in Ω Ω ,

(2 ) 0 in 1, , ,
i

j
v
x

p
x x eff ij O

j
v
x

p
x x eff ij k i k,

i
j i j

i
j i j (14)

where vi j, is the mean velocity component; ∗p is the mean kinematic
pressure (i.e., p ρ/ ); fk is the constant source term generated by the k-th
turbine (modeled as an actuator disk); i j, are indexes over the co-
ordinate directions; Sij is the mean rate-of-strain tensor, defined as:

⎜ ⎟= ⎛
⎝

∂
∂

+
∂
∂

⎞
⎠

S v
x

v
x

1
2

;ij
i

j

j

i (15)

and νeff is the effective viscosity, which for a laminar case is simply
equal to the fluid kinematic viscosity, = =ν ν μ ρ/eff , and for turbulent
flows is the sum of the fluid and turbulent viscosity, = +ν ν νeff turb. The
turbulent viscosity is the result of the Boussinesq’s hypothesis to model
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the Reynolds stresses that arise after the Reynolds averaging operation.
Turbulence modeling is required to calculate this viscosity and close the
Navier-Stokes equations, and, consequently, more equations need to be
considered as constraints of the problem. In the present formulation we
adopted the −k ω turbulence model to close the RANS equation, but the
current approach can similarly be extended to other one- and two-
equation turbulence models. For the −k ω turbulence model, the tur-
bulent viscosity is given by the ratio between the turbulence kinetic
energy, k, and the specific dissipation rate, ω. The equations to calculate
these two variables are the following:

∂
∂

− + − ∂
∂

⎡
⎣
⎢

⎛
⎝

+ ⎞
⎠

∂
∂

⎤
⎦
⎥ =∗ ∗T v k

x
k
ω

S β kω
x

ν σ k
ω

k
x

: 2 0 in Ω,j
j j j

1
2

(16)

∂
∂

− + − ∂
∂

⎡
⎣
⎢

⎛
⎝

+ ⎞
⎠

∂
∂

⎤
⎦
⎥ =T v ω

x
αS βω

x
ν σ k

ω
ω
x

: 2 0 in Ω,j
j j j

2
2 2

(17)

where ∗ ∗α β β σ σ, , , , are empirical constants of the model, and S is the
modulus of the mean rate-of-strain tensor, defined as:

=S S S .ij ij (18)

The state variables, also called field variables, ϕ, for this problem
are therefore:

= ⎧
⎨⎩

∗

∗ϕ
p v
p v k ω

( , ) Laminar case,
( , , , ) Turbulent case.

i

i (19)

The derivation of the adjoint formulation depends on the state
equations that govern the original system and on the problem as-
sumptions. Three cases can be identified for the adjoint formulation:
laminar, turbulent, and frozen-turbulence cases. The first two cases are
the results of the original laminar and turbulent equations respectively,
whereas the latter is the results of turbulent equations when the frozen-
turbulence hypothesis is used. Under this assumption, the variation of
the turbulence field is neglected (i.e., the turbulent viscosity is assumed
constant with respect to the mean velocities), and only changes of the
mean flow are taken into account, described through the system for
continuity and momentum. Although the gradient obtained by freezing
the turbulence field is incomplete, this assumption is a convenient
simplification that is considered standard for adjoint methods [50], and
as such it is also adopted in the present work.

The Lagrangian function that results for the laminar and frozen-
turbulence cases is:

̂ ̂∫ ∫= +L f v d p v C M dΩ ( , )·( , ) Ω,k n i iΩ ΩO (20)

whereas for the turbulent case, the Lagrangian function is given by:

̂ ̂ ̂ ̂∫ ∫= +L f v d p v k ω C M T T dΩ ( , , , )·( , , , ) Ω,k n i iΩ Ω 1 2
O (21)

where the adjoint variables, ̂ϕ , for each of the cases are the following:

̂ ̂ ̂
̂ ̂ ̂ ̂= ⎧

⎨⎩
ϕ

p v

p v k ω

( , ) Laminar and frozen-turbulence cases,

( , , , ) Turbulent case.
i

i (22)

The derivation of the terms given in Eq. (3) and used to calculate the
total gradient follows classical techniques from calculus of variations.
The first terms analyzed here are the partial derivatives with respect to
the design variables. As opposed to the traditional shape optimization
formulations, the WFLO problem does not require surface sensitivities
which would in turn require surface displacements and mesh de-
formation. In the current problem, the calculation of the wind turbine
position sensitivities entails instead the displacements of the volumes
where the source terms are applied without the need of mesh de-
formation. In fact, the source terms will be shifted over different regions
depending of the chosen displacements to calculate the partial deriva-
tives with respect to the design variables (see Fig. 1 for clarification
purposes).

When considering the partial derivative of the objective function,
the resulting expression is the following:

∫ ∫∂
∂

= ∂
∂( ) ( )α α

Jd f v dΩ Ω .k nΩ ΩO O (23)

The calculation of this term requires the normal average velocity
over the shifted volumes illustrated in Fig. 1 for each of the design
variables. This can be computed numerically with a central difference
discretization at no additional cost given that the field variables are
already known:

∫ ∫∂
∂

= ∂
∂

⎛
⎝

⎞
⎠

= …( )α
Jd

x x
f v d k KΩ

[( , ) ]
Ω 1, , .

k V k nΩ 1 2O k (24)

When considering instead the partial derivative of the augmented
constraints, it can be seen that the displacements of the source terms
affect only the momentum equations, whereas the other state equations
remain equal to zero. The resulting expression is therefore the fol-
lowing:

̂ ̂∫ ∫∂
∂

= ∂
∂( ) ( )α

ϕ G
α

d v M dΩ · Ω .T
i iΩ Ω (25)

If the state equations remained satisfied everywhere in Ω when
calculating the partial derivative in Eq. (25), this term would result
equal to zero. However, because the turbine (source term) positions are
the design variables of the problem and their displacements need to be
defined and applied to calculate the derivative, an imbalance in the
momentum equations is created. This imbalance is equal to the source
term and is present with a positive value in the regions where the
shifted volumes do not overlap with the original turbine volume or with
a negative value where the original volume does not overlap with
shifted volumes. In formulas, this can be expressed as:

̂ ̂∫ ∫∂
∂

= ∂
∂

⎛
⎝

⎞
⎠

= …( )α
ϕ Gd

x x
f v d k KΩ

[( , ) ]
Ω 1, , ,T

k V k nΩ 1 2 k imb, (26)

where Vk imb, refers to the region where the momentum equations result
imbalanced when a central difference approximation is used to dis-
cretize the derivative and a volume shift is applied. The final result can
be computed numerically once the adjoint variables are known.

Fig. 1. Schematic illustrating the calculation of material partial derivatives.

E.G.A. Antonini et al. Applied Energy 228 (2018) 2333–2345

2336



The two partial derivatives calculated in Eqs. (25) and (26) are the
fundamental components used to obtain the final value of the objective
function gradient. However, other terms are needed to calculate the
required adjoint variables. For this purpose, the last two terms given in
Eq. (3), namely the partial derivatives with respect to the field vari-
ables, need to be calculated. First, the partial derivative of the objective
function can be easily calculated as:

∫ ∫ ∫∂
∂

= ∂
∂

=
ϕ

ϕ
ϕ

J δ d f v δv d f δv dΩ ( ) Ω Ω.k n n k i iΩ Ω Ω ,
O O O (27)

The second term is the partial derivative of the augmented con-
straints and it requires instead a few algebraic manipulations to obtain
a convenient relation that can be subsequently used for the adjoint
equations. To derive it, the following rule for integration by parts for
multivariable calculus will be used:

∫ ∫ ∫∂
∂

= − ∂
∂

g
x

hd ghn d h
x

gdΩ Γ Ω.
i

i
iΩ Γ Ω (28)

Also, depending on the cases previously discussed (i.e., laminar,
frozen-turbulence, and turbulent), different equation will be derived.
The following sections will illustrate the two different derivations.

3.1. Adjoint equations for the laminar and frozen-turbulence cases

The adjoint equations and boundary conditions for the laminar and
frozen-turbulence cases are derived by developing the last term re-
quired:

̂ ̂

̂

∫ ∫

∫

∂
∂

= ⎧
⎨⎩

− ∂
∂

⎫
⎬⎭

+ ⎧
⎨⎩

∂
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+ ∂
∂

+
∂
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− ∂
∂

⎫
⎬⎭

∗

ϕ G
ϕ

ϕδ d p δv
x

d

v δv v
x

v δv
x

δp
x x

ν δS d

Ω Ω

(2 ) Ω,

T i

i

i j
i

j
j

i

j i j
eff ij

Ω Ω

Ω

(29)

where

⎜ ⎟= ⎛
⎝

∂
∂

+
∂
∂

⎞
⎠

δS δv
x

δv
x

1
2

.ij
i

j

j

i (30)

The integration by parts is used (twice for the diffusion term) to
obtain the final expression:
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ν S δv d
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T

i
i i

i

j
j j

i

j
i

i

i

j
eff ij i

i i i j j i i i i eff ij j

eff ij j i

Ω Ω

Γ

(31)

where
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After collecting terms with the variations of the field variables, the
resulting expression is the following:
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The adjoint equations can be eventually determined to eliminate the
variations of the field variables. By summing the partial derivatives of
the objective function in Eq. (27) and of the augmented constraints in
Eq. (33), the adjoint equations for the laminar and frozen-turbulence
cases are:
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̂ =∗δp v n[ ] 0 in Γ,i i (36)
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̂ =v ν δS n2 0 in Γ.i eff ij j (38)

3.2. Adjoint equations for the turbulent case

The adjoint equations and boundary conditions for the turbulent
case are derived, as in the previous case, by developing the last term
required:
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where
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(40)

The integration by parts is used (twice for the diffusion term) to
obtain the final expression:
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After collecting terms with the variations of the field variables, the
resulting expression is the following:
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By eliminating the variations of the field variables and by summing

the partial derivatives of the objective function in Eq. (27) and of the
augmented constraints in Eq. (33), the adjoint equations for the tur-
bulent case are:
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4. Verification

In this section, the verification of the proposed continuous adjoint
method is carried out by comparing its results in terms of gradient
computation with a finite difference discretization, defined according
to:
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(54)

where δαn is a small variation of the n-th design variable. As opposed to
the adjoint method, the gradient calculated with the central difference
discretization requires two evaluations of the objective function, J, for
each of the design variables. This form of verification has been ex-
tensively used in literature to assess the accuracy of the derivatives
(e.g., [43,45,50,51]). It is important to note that, although the con-
tinuous adjoint formulation calculates the exact gradient, its
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implementation requires the discretization of the equations over the
same computational mesh of the primal simulation. Hence, both the
central difference and adjoint method results are approximations to the
underlying gradient, for which there are no closed-form expressions
available.

The continuous adjoint method was therefore applied to the ver-
ification case shown in Fig. 2, which consists in finding the gradient of
the power production of a turbine placed in the wake of another with
respect to its turbine coordinates. For this case, a 2D domain was used
and the results were obtained for the three formulations of the adjoint
equations. To have a robust verification and to capture both stream-
wise and cross-wise variations, the gradient components were calcu-
lated for the two directions of the domain and on a regular grid of
downstream and cross-stream positions. The downstream positions
were set to 10D and 15D, with a cross-stream spacing of 0.5D, where D
is the turbine rotor diameter equal to 80 m. These specific positions
were chosen based on preliminary tests we performed to capture the
largest variations in the calculated gradients.

The mathematical formulation of this adjoint problem was im-
plemented in OpenFOAM [52]. The implementation took advantage of
the top-level syntax of the code, which is very close to the conventional
mathematical notation for tensors and partial differential equations
[53]. Thanks to the high degree of similarity between the state and the
adjoint equations, the latter ones were elegantly coded in a similar way
to the NS equations. Second-order discretization was subsequently ap-
plied to the adjoint equations for the interpolation of the adjoint vari-
ables. Similarly to the NS equations, the semi-implicit method for
pressure-linked equations (SIMPLE) algorithms was used to solve si-
multaneously the set of adjoint equations by an iterative scheme.

4.1. Boundary conditions

The boundary conditions for the wind turbines simulation were set
with realistic values for wind speed and turbulence quantities. Even
though the simulated system is 2-dimensional, an atmospheric
boundary layer (ABL) was assumed to be present at the inlet. The re-
lations that govern an ABL can be found in Ref. [16]. Given the ABL
characterizing parameters, i.e., undisturbed speed at reference height,

=U 10 m/sref , reference height, =H 60 m, and surface roughness,
=z 0.0018 m0 , the turbulence kinetic energy and specific dissipation

rate were calculated and then prescribed at the inlet along with the
wind speed. The outlet boundary condition was defined as pressure
outlet, with zero gradient for the velocity and turbulence quantities.
The side boundary condition was defined as zero gradient for all the

variables.
With regards to the adjoint simulation, the definition of the

boundary conditions requires a specific discussion. In traditional cases
of shape design optimization, the boundaries of the domain are subject
to variation depending on the design variables. Therefore the variation
of the boundaries and the definition of the adjoint boundary conditions
are crucial for an accurate gradient calculation (see Ref. [54] for a
detailed analysis). In the present WFLO problem, the boundaries are not
subject to any variation and they do not carry any objective function.
Because of these circumstances, their influence on the gradient calcu-
lation was seen to be negligible. The boundary conditions on Γ for the
present problem can therefore be fulfilled by the following solution:
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(55)

This solution enabled a straightforward implementation, a stable
convergence of the iterative scheme, and accurate results when con-
sidering the gradient calculation.

4.2. Verification results

The results of the developed adjoint formulation were compared to
those of a central difference (CD) approach, which can be considered as
the best achievable solution for numerical gradient computations.
Figs. 3 and 4 show the values of the gradient obtained by the three
different adjoint formulations and the CD approach. Tables 1–3 report
evaluation metrics when comparing the adjoint formulations and the
CD approach. These are the relative magnitude of the gradient com-
puted with the adjoint method:

∇ = ∇
∇

J J
J

‖ ‖ ‖ ‖
‖ ‖

·100;rel
AM

AM max, (56)

the percentage difference in the absolute value of the gradients com-
puted by the adjoint method with respect to the central difference ap-
proach:

= ∇ − ∇
∇∇

J J
J

err ‖ ‖ ‖ ‖
‖ ‖

·100;J
AM CD

CD max, (57)

the angular difference in the direction between the gradient calculated
with the adjoint method and the central difference approach, according
to:

= −θ θerr ‖ ‖.θ AM CD (58)

For the laminar case, the adjoint method could capture almost ex-
actly the gradient given by the central difference approach for all the
downstream positions. A maximum difference of 1.2% in the absolute
value and a maximum difference of 1.5° in the direction were observed.
When the frozen-turbulence assumption was used for the turbulence
equations, higher discrepancies were seen between the results of the
two methods, with a maximum difference of 12.0% in absolute value
and a maximum difference of 72.3° in the direction. The fully turbulent
formulation of the adjoint method had results that overall were com-
parable to the laminar case in terms of accuracy both in the absolute
value and direction. However, for both the frozen-turbulence and tur-
bulent results, high discrepancies were observed in the direction values
for the cases where the second turbine was in the outermost lateral
positions (2.0 and 2.5D cross-stream positions). This is related to the
fact that the two components of the gradient approach a value of zero,
and the direction of the gradient reported in the tables is calculated as
the arctangent of a division of two small numbers, thus subject to nu-
merical errors. As a result, small differences in the gradient components
can show as large differences in its direction. However, this happens
only when the magnitude of the gradient is significantly lower and

Fig. 2. Schematic of the layout for the verification case. The two grey areas
represent the volumes where the wind turbine momentum sources are applied.
The black dots indicate the different positions where the second wind turbine is
placed when the gradient is calculated.
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almost negligible with respect to the wake region. Therefore this be-
havior is not expected to affect the optimization process.

In terms of computational cost, the central difference approach re-
quired 4 simulations to compute the gradient. However, CD requires in
general N2 system solutions, where N is the number of design variables
(in the WFLO, there are two design variables per wind turbine). Instead,
the adjoint method required the solution of the adjoint system and 4
numerical integrations (with negligible computational cost) to compute
the gradient, regardless of the number of design variables. For the
present verification case where the gradient of only one turbine was
calculated, the computational cost of the adjoint method was 75%
lower than the central difference approach. Higher reductions are
however expected when more wind turbines are considered, such as the
application case in the following section.

Overall, the results presented for this verification case showed that
the adjoint method can effectively replace a traditional central differ-
ence approach for gradient computation and significantly reduce the
amount of time required for the process. The adjoint method will be
therefore integrated, in place of a central difference discretization, in
the gradient-based optimization methodology illustrated in the fol-
lowing section.

5. Optimization methodology for the WFLO problem

The gradient calculation performed with the adjoint method is an
essential component of the optimization methodology, which aims to
find the optimal placement of a given number of wind turbines within a

wind farm domain to maximize the AEP. The optimization metho-
dology, illustrated in Fig. 5, starts with the wind rose, i.e., the site-
specific statistical distribution of the wind resource, and an initial wind
farm layout. Initially, CFD simulations are used to calculate the AEP of
that particular configuration. If convergence/termination criteria in the
iterative loop are not met, adjoint CFD simulations are then used to
calculate the gradient of the objective function, i.e., the gradient of the
AEP with respect to the turbine positions. Using the calculated gra-
dients, turbine positions are updated to create a new turbine layout,
which is then evaluated with a CFD simulation. These steps are re-
peated until convergence/termination criteria are met.

This methodology was entirely developed and implemented to run
autonomously. Two separate routines were coded to take care of the
calculation of the AEP and of the gradient. In these routines, the ori-
ginal and adjoint CFD simulations are automatically set up and run
using OpenFOAM, and the results of interest are generated and passed
to the rest of the loop. The overall optimization process, which consists
of running the two aforementioned routines, updating the turbine po-
sition, and monitoring the convergence, is handled by a sequential
quadratic programming (SQP) algorithm as implemented in the open-
source library NLopt [55,56]. A stopping criterion is applied so that the
optimization run is stopped when changes in the objective function
from one iteration to the next are less than 0.01%.

The developed optimization methodology was applied to optimize a
2D wind farm layout consisting of 16 wind turbines using the fully
turbulent formulation. The domain used for the CFD and adjoint si-
mulations had a dimension of 40D×40D, whereas the wind turbines

Fig. 3. Gradient computation required for a gradient-based optimization algorithm. The figures show the results obtained by the adjoint method compared to a
central difference discretization approach for the different lateral positions of the second wind turbine at 10D downstream.
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were constrained to be within a 17D-radius circumference, as shown in
Fig. 6. This circular sub-domain was introduced as a computational
convenience, to allow us to efficiently rotate the wind farm layout
depending on the specified wind direction, rather than rotating the
boundary conditions. A minimum distance of 1D between wind turbines
was set as additional constraint to avoid any overlap of wind turbines
generated by the optimization algorithm.

The convergence behavior of gradient-based optimization methods
is highly dependent on the starting design configuration. Due to the
local character of gradient information, gradient-based optimization
methods are only guaranteed to perform local optimization, i.e., they

converge to the nearest locally optimal solution, but they cannot
guarantee that the global optimal solution is found. To overcome this
limitation, the initial solution should be located in the basin of attrac-
tion of a global optimum to get a global optimum solution. Because of
that, and to analyze the dependence of the gradient-based methodology
to the initial configuration, two initial layouts were tested, namely a
regular layout (commonly used in wind farms) and a random layout
(see Fig. 7). With these initial layouts, seven different wind roses were
chosen to conduct a comprehensive analysis of the proposed metho-
dology. Six of these wind roses were composed of evenly weighted wind
directions, whereas the last one was representative of a more realistic

Fig. 4. Gradient computation required for a gradient-based optimization algorithm. The figures show the results obtained by the adjoint method compared to a
central difference discretization approach for the different positions of the second wind turbine at 15D downstream.

Table 1
Relative magnitude of the gradient computed with the adjoint method, ∇J‖ ‖rel ,
and errors in magnitude, ∇err J , and direction, errθ, between the gradient cal-
culated with the adjoint method and the central difference approach on a grid
of locations downstream of the turbine for the laminar case.

10D downstream 15D downstream

Cross-
stream [D]

∇J‖ ‖rel [%] ∇err J [%] errθ [°] ∇J‖ ‖rel [%] ∇err J [%] errθ [°]

0.0 1.2 1.2 0.0 1.0 0.8 0.0
0.5 100.0 0.1 0.3 99.7 0.5 0.3
1.0 47.8 0.7 0.1 46.8 0.9 0.0
1.5 0.4 0.4 1.1 0.3 0.1 0.9
2.0 0.4 0.3 1.3 0.3 0.1 1.1
2.5 0.4 0.3 1.5 0.3 0.1 1.4

Table 2
Relative magnitude of the gradient computed with the adjoint method, ∇J‖ ‖rel ,
and errors in magnitude, ∇err J , and direction, errθ, between the gradient cal-
culated with the adjoint method and the central difference approach on a grid
of locations downstream of the turbine for the frozen-turbulence case.

10D downstream 15D downstream

Cross-
stream [D]

∇J‖ ‖rel [%] ∇err J [%] errθ [°] ∇J‖ ‖rel [%] ∇err J [%] errθ [°]

0.0 18.4 12.0 0.0 11.8 10.5 0.0
0.5 65.1 3.0 9.2 39.4 0.6 14.3
1.0 97.6 1.1 4.5 63.2 3.5 7.2
1.5 100.0 0.5 3.2 73.4 3.7 5.4
2.0 37.8 1.1 12.0 52.7 3.6 7.5
2.5 10.1 3.7 72.3 14.5 0.1 40.3
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scenario with a predominant wind direction (see Figs. 8 and 9). For all
wind resource distributions, the wind speed was considered constant at
10m/s.

The results obtained from the optimization are reported in Figs. 8
and 9 for a regular and a random initial layout, respectively. For each
wind rose reported on the left, the final optimal layout is shown in the
center along with the value of the normalized AEP through the itera-
tions on the right. The normalized AEP is defined as the ratio between
the actual AEP and the AEP that would be generated by the same tur-
bines operating in isolation. Convergence was reached in approximately
30–60 iterations of the optimization loop for all the cased analyzed. The
results of the optimization process in terms of normalized AEP are

reported in Table 4.
For the cases with a regular initial layout, it is possible to notice that

for evenly weighted wind roses the generated optimal layout retained a
certain degree of regularity. For example, the layouts for 4 and 12 di-
rections were symmetric about a 90° rotation; the layouts for 2 and 6
directions were instead symmetric about a horizontal or vertical line
passing by the center of the domain. These characteristics of symmetry
of the layouts for evenly weighted wind directions and for uniform
wind speed are usually considered an indication of an effective opti-
mization algorithm. Obviously, these characteristics of regularity could
not be seen in the optimal layouts for other case of a random initial
layout.

Looking at the results in terms of normalized AEP for the optimal
layouts, it is interesting to notice that the actual AEP was greater, up to
a maximum of 8%, than the one that would be generated by the same
turbines operating in isolation. The reason for this interesting result can
be explained by looking at two different aspects. First, the CFD simu-
lations allow to accurately resolve the flow field and to capture the real
behavior of wakes. In fact, besides creating a wind speed reduction in
the wake of wind turbines, wakes also generate a local speed-up effect
just outside of the wake region to compensate the wind speed deficit
within the wake. The optimization algorithm took advantage of this
flow characteristic and, depending on the wind rose, tried to move the
wind turbines toward these favorable positions where the speedups
were higher. This speedup effect is more pronounced in 2D simulations
like the ones conducted in the present study, whereas its effect should
be lower in 3D simulations [40]. Second, the wind farm had a low
density because it consisted only of 16 wind turbines that could be
spread over a wide area. This fact allowed the optimization algorithms
to find favorable locations with speed-up effects for almost all the
turbines. If the wind farm have had a higher wind turbine density, it is
unlikely that the normalized AEP would have had a value greater than 1
because of the higher wake losses. It is also possible to notice that as the
wind roses became less sparse, the maximum normalized AEP dropped
from 1.07–1.08 for both the unidirectional wind roses to 1.00–1.01 for
the 12-direction wind roses. This indicates that as the wind rose has
more wind directions, it is more difficult to find favorable positions
with speed-up effects for all the wind turbines and some of them end up
in locations of partial wake shading.

With regards to the convergence behavior of the optimization al-
gorithm, the results show that, as expected, the optimal layouts found
with the proposed methodology were highly dependent on the initial
layout. The optimal layouts obtained starting from a regular layout
were very different from those obtained when the optimization started
from a random layout. In terms of AEP, it was observed that the optimal
layouts obtained when a regular layout was used as a starting point
resulted in lower energy than those obtained starting from a random
layout. In both cases, the algorithm can be said to have converged to a
local minima, though the minimum of the objective function was lower
in the random layout case. Another interesting observation that can be
made from the results is that, for a regular initial layout and when the
wind rose had directions aligned with the wind turbine arrangement (2-

Table 3
Relative magnitude of the gradient computed with the adjoint method, ∇J‖ ‖rel ,
and errors in magnitude, ∇err J , and direction, errθ, between the gradient cal-
culated with the adjoint method and the central difference approach on a grid
of locations downstream of the turbine for the turbulent case.

10D downstream 15D downstream

Cross-
stream [D]

∇J‖ ‖rel [%] ∇err J [%] errθ [°] ∇J‖ ‖rel [%] ∇err J [%] errθ [°]

0.0 9.9 3.6 0.0 5.1 3.9 0.0
0.5 62.0 0.1 2.8 37.6 2.4 5.3
1.0 95.1 1.2 1.3 62.1 4.5 2.5
1.5 100.0 0.5 1.3 72.6 4.6 2.0
2.0 34.6 1.4 6.0 53.0 3.4 3.6
2.5 6.6 0.2 47.8 12.7 1.7 22.2

Fig. 5. Flow chart reproducing the optimization methodology used to solve the
wind farm layout optimization problem

Fig. 6. Schematic of the 2D domain used to test the optimization methodology.

Fig. 7. Initial layouts used as inputs for the optimization process.
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and 4-direction wind roses), the optimization algorithm seemed to be
trapped in a local optimum in the early stages of the optimization loop.
This issue was not observed when the optimizations started from a
random initial layout. This is evidence of the non-linear nature of the
optimization problem, with strong interactions between the wind re-
source profile and the wind turbine layout.

Overall, the developed optimization methodology based on the
adjoint method for the gradient computation could effectively improve
the AEP of a given wind farm layout by changing its turbine positions.
The improvements ranged from about 7% for the case of a 12-direction
non-uniform wind rose and regular initial layout, to 37% for the case of

a unidirectional wind rose and regular initial layout. On average, the
improvements were of 18% and 12% for the regular and random initial
layouts, respectively.

6. Conclusions

In the present paper, we developed an optimization methodology
for the WFLO problem that integrates the high accuracy and flexibility
offered by the CFD models and that overcomes the computationally
high costs of a CFD-based optimization. To this end, we developed and
used an adjoint method in its continuous formulation for the gradient
computation. The adjoint formulation was derived for three different

Fig. 8. Optimization results obtained from a regular initial layout. For each
wind rose on the left, the final optimal layout is shown in the center along with
the value of the normalized annual energy production (AEP) through the
iterations on the right.

Fig. 9. Optimization results obtained from a random initial layout. For each
wind rose on the left, the final optimal layout is shown in the center along with
the value of the normalized annual energy production (AEP) through the
iterations on the right.
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flow scenarios, namely, laminar, frozen-turbulence, and turbulent
flows. The derived adjoint equations were implemented in OpenFOAM
by taking advantage of the top-level syntax of the code and of the si-
milarity between the Navier-Stokes and adjoint equations. The gradient
calculation using the developed adjoint method was implemented in a
gradient-based optimization methodology to solve a 2D WFLO problem.

The developed adjoint formulation was first verified on a simplified
2D 2-turbine wind farm where only the gradient of the wind turbine
operating in wake conditions was considered. The results obtained with
adjoint method in terms of gradient computations were generally ac-
curate when compared to the results obtained with a central difference
discretization. The calculated gradients showed higher accuracy for
laminar and turbulent flow regimes, while lower accuracy was observed
for the frozen-turbulence case. Overall, the results showed that the
adjoint method could effectively replace a traditional central difference
approach for gradient computation and significantly reduce the amount
of time required for the process.

The gradient calculation performed with the adjoint method was
implemented in an optimization methodology to solve a 2D WFLO
problem. A hypothetical 16-turbine wind farm was defined with two
different initial layouts, with turbine positions either set on a regular
grid or random. Seven wind roses were also defined as inputs for the
optimization for a comprehensive analysis. Six of them were formed by
evenly weighted wind directions and one with a realistic wind rose with
a predominant wind direction. The optimization methodology could
effectively improve the AEP of the given wind farm layouts by changing
the turbine positions on average by 18% and 12% for the regular and
random initial layouts, respectively.

Overall, the developed continuous adjoint formulation and its re-
sults showed that significant improvements can be achieved in terms of
computational time with respect to traditional approaches for gradient
computation, such as the central difference approach, without dimin-
ishing the accuracy. The developed gradient-based optimization
methodology using the adjoint method showed instead that it is pos-
sible to effectively improve the wind farm AEP. The optimization
methodology showed also to benefit from the use of CFD models which
offer a more detailed representation of the flow field in wind farms by,
for example, capturing speed-up effects just outside of wake regions
that cannot be observed with analytical wake models. This continuous
adjoint formulation applied to a 2D WFLO is a first step toward a more
general 3D formulation that could enable an optimization of wind farm
layouts in complex terrain.
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